PERBANDINGAN METODE SARIMA DAN EXPONENTIAL SMOOTHING DALAM MEMPREDIKSI CURAH HUJAN DI KABUPATEN BANGKA TENGAH
DOI:
https://doi.org/10.33019/fraction.v4i2.64Keywords:
SARIMA, Exponential Smoothing, rainfallAbstract
Indonesia is a country that has a tropical climate because it is located on the equator. The tropical climate has two seasons, namely the dry season and the rainy season. Each region has a different climate intensity. Rainfall is one of the elements of weather and climate that has an influence on tropical areas such as Indonesia. To find out changes in rainfall patterns, predictions of the amount of rainfall are carried out using past data. In this research, rainfall prediction uses two methods, namely the Seasonal Auto Regressive Integrated Moving Average (SARIMA) method and exponential smoothing with rainfall data from 2018-2023. SARIMA is an ARIMA method that was developed to use data patterns that repeat seasonally. in a fixed time such as quarterly, semi-annually and annually. Exponential smoothing is a moving average forecasting technique that weighs past data exponentially so that the most recent data has a weight or greater in the moving average. Based on the results of the research, it was found that the best method between SARIMA and Exponential Smoothing Winters Additive was Exponential Smoothing Winters Additive with an RMSE value of 3.283.
Downloads
References
M. Rizki, S. Basuki, and Y. Azhar, “Implementasi Deep Learning Menggunakan Arsitektur Long Short Term Memory(LSTM) Untuk Prediksi Curah Hujan Kota Malang,” J. Repos., vol. 2, no. 3, pp. 331–338, 2020, doi: 10.22219/repositor.v2i3.470.
D. Desmonda, T. Tursina, and M. A. Irwansyah, “Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series,” J. Sist. dan Teknol. Inf., vol. 6, no. 4, p. 141, 2018, doi: 10.26418/justin.v6i4.27036.
A. Kadmaerubun and P. P. Simanjuntak, “Analisis Indeks Precipitable Water, Komponen Angin Zonal Dan Meridional Sebagai Prediktor Curah Hujan Bulanan Di Kota Sorong, Papua Barat,” Jukung (Jurnal Tek. Lingkungan), vol. 8, no. 2, pp. 29–43, 2022, doi: 10.20527/jukung.v8i2.14908.
M. I. Azhar and W. F. Mahmudy, “Prediksi Curah Hujan Menggunakan Adaptive Neuro Fuzzy Inference Sytem (ANFIS),” e-Proceeding Eng., vol. 2, no. 11, pp. 1860–1867, 2015.
M. I. Hakiqi, A. Firmansyah, and R. Arisanti, “Peramalan Curah Hujan di Kota Bandung dengan Metode SARIMA (Seasonal Autoregressive Integrated Moving Average),” Inferensi, vol. 1, no. 1, p. 23, 2023, doi: 10.12962/j27213862.v1i1.19119.
W. Puspitasari, S. Rustiana, Y. Suparman, and T. Purwandari, “Perbandingan Hasil Peramalan Curah Hujan Bulanan Kota Bogor Dengan Seasonal Autoregressive Integrated Moving Average (Sarima) Dan Singular Spectrum Analysis (Ssa),” Pros. Sendik, vol. 5, no. 2, p. 206, 2019.
N. H. Latief, N. Nur’eni, and I. Setiawan, “Peramalan Curah Hujan di Kota Makassar dengan Menggunakan Metode SARIMAX,” Stat. J. Theor. Stat. Its Appl., vol. 22, no. 1, pp. 55–63, 2022, doi: 10.29313/statistika.v22i1.990.
R. Biri, Y. A. . Langi, and M. S. Paendong, “Penggunaan Metode Smoothing Eksponensial Dalam Meramal Pergerakan Inflasi Kota Palu,” J. Ilm. Sains, vol. 13, no. 1, p. 68, 2013, doi: 10.35799/jis.13.1.2013.2035.
I. K. JELFI, Penerapan Algoritma Additive Holt-Winters Untuk Peramalan Jumlah Kemunculan Titik Panas (Hotspot) Di Provinsi Riau. 2021.
Fikri Badru Salam and Mujiati Dwi Kartikasari, “Perbandingan Metode Peramalan Double Exponential Smoothing dan Triple Exponential Smoothing with Damped Parameter terhadap Kunjungan Wisatawan Mancanegara di Provinsi Jawa Barat,” Emerg. Stat. Data Sci. J., vol. 1, no. 1, pp. 148–158, 2023, doi: 10.20885/esds.vol1.iss.1.art16.
K. Api and D. I. Jabodetabek, “Liami ningsih 4218003,” 2022.
V. R. Prasetyo, H. Lazuardi, A. A. Mulyono, and C. Lauw, “Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 1, pp. 8–17, 2021, doi: 10.25077/teknosi.v7i1.2021.8-17.
Wulandari R.A and Gernowo R, “Metode Autoregressive Integrated Moving Average (ARIMA) dan Metode Adaptive Neuro Fuzzy Inference System (ANFIS) dalam Analisis Curah Hujan,” Berk. Fis., vol. 22, no. 1, pp. 41–48, 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Madhania Fitri Amanda, Muhammad Syafar, Jenny Wulandari, Novenda Shavira, Hilda Marsyawa Aulia, Delia Syahfitri, Dessy Yuliana Dalimunthe

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.










